Solid particle erosion is one of the key issues affecting operational reliability and the cost of tools and equipment in the oil and gas industry. In a particular erosive environment, the extent to which erosion occurs depends on many factors, such as flow conditions, fluid properties, wall material, and particle properties. As a result, it is difficult to investigate the effects of all of these factors using experimental methods. One comprehensive alternative, however, is to use computational fluid dynamics (CFD), which can provide the analyst with a great deal of information about the phenomenon, such as where erosion occurs as well as its severity. Of course, when using any CFD-based erosion prediction method, care must be taken when selecting appropriate meshing practices, solution parameters, and sub-models.

Best practices and guidelines for solid particle erosion modeling using CFD are described. In addition to discussing many parameters that should be considered when using CFD to predict solid particle erosion, the effects of many of these parameters and sub-models within the CFD codes are also discussed with several examples comparing CFD results to available experimental data. This paper can serve as a first step toward developing a comprehensive guideline for the industrial modeling of erosion phenomena and to help engineers improve the accuracy of erosion wear predictions.

You do not currently have access to this content.