In recent years there has been an increased interest in drilling deeper geothermal wells to obtain more energy output per well with the corresponding higher temperature and pressure and increased corrosiveness of the geothermal environment. To explore the potential of the high alloy austenitic stainless steel UNS S31254 in future deep geothermal wells corrosion testing was done in simulated geothermal environment at 180°C and 350°C with a pressure of 10 bar. The simulated environment was composed of steam with H2S, HCl and CO2 gases, with a pH of 3 upon condensation. The testing was done in a flow through reactor for 1 and 3 week exposures. The stainless steel UNS S31254 performed well at 180°C with negligible corrosion rates both for the 1 and 3 week tests and no localized corrosion damage detected. After the testing at 350°C localized corrosion and substantial amount of NaCl crystals were observed on the surface of the samples. Microstructural and chemical composition analysis revealed large cracks in the cross-section of the sample most likely due to chloride induced stress corrosion cracking. The measured corrosion rate for the 1 and 3 week test was 0.024 mm/year and 0.24 mm/year respectively.

You do not currently have access to this content.