A model is presented for the prediction of the corrosion rate by CO2 under dewing conditions. A mechanistic approach is developed that takes into consideration the hydrodynamics, thermodynamics, heat and mass transfer, chemistry, and electrochemistry during the phenomenon of Top-Of-The Line corrosion. This model is validated by experimental data. It offers a better insight on the role played by primary parameters such as the temperature, the total pressure, the partial pressure of CO2, the gas velocity, and the condensation rate.

You do not currently have access to this content.