Abstract
Stainless steel clad rebar (SCR) was investigated because it may become a cost-effective means of controlling corrosion in concrete under very aggressive environments. Sound SCR (316L cladding) resisted corrosion in saturated Ca(OH)2 solution (SCS) with up to 5 wt% chloride. Cladding breaks on SCR induced significant corrosion of exposed underlying CS in SCS with only 1 wt% chloride. A computer model using laboratory data as input was constructed to evaluate the extent of galvanic corrosion of SCR. Modeling indicated that concrete resistivity and size of the cladding break are the main controlling factors of galvanic corrosion.
Government work published by the Association for Materials Protection and Performance (AMPP) with permission of the author(s). Positions and opinions advanced in this work are those of the author(s) and not necessarily those of AMPP. Responsibility for the content of the work lies solely with the author(s).
2001
GOV
You do not currently have access to this content.