Abstract
Conditions conducive to the enhancement of corrosion-fatigue crack growth and of hydrogen embrittlement can be generated by the activity of sulphate-reducing bacterial. However, while the presence of bacteria encourages more hydrogen entry into susceptible metals when compared to similar levels of sulphide generated abiotically, corrosion-fatigue crack growth rates are slower in biological environments than the equivalent abiological environment. These results are discussed in the light of recent findings on the enhancement and inhibition of surface corrosion by bacterial biofilms.
© 1997 Association for Materials Protection and Performance (AMPP). All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise) without the prior written permission of AMPP. Positions and opinions advanced in this work are those of the author(s) and not necessarily those of AMPP. Responsibility for the content of the work lies solely with the author(s).
1997
Association for Materials Protection and Performance (AMPP)
You do not currently have access to this content.