Abstract
Electrochemical measurements were performed with micro and ultramicro electrode arrays to evaluate local mass transfer rates with high lateral resolution in order to explain extreme corrosion rates during flow induced localized corrosion at leading edges of small flow disturbances. It was found that the mass transport coefficient close to the leading edge of a rectangular cavity in the wall of a rectangular flow channel is higher by a factor of 4 - 7 than at the plain channel wall. A parabolic correlation was found between wall shear stress and mass transfer rate at the plain channel wall. Assuming the validity of this correlation also in the high turbulent areas at leading edges of cavities enhancement factors in the order of 200 were assessed for the wall shear stress at the cavity compared to the plain channel wall.