Abstract
Corrosion studies of 304L and 316L stainless steel weldments were conducted in natural and simulated fresh-water systems containing microorganisms. Experimental conditions were chosen to simulate microbiologically influenced corrosion (MIC) conditions in practical applications. Results showed that corrosion, with the formation of nodules, occurred at imposed crevice locations within weldment heat-tint areas. Upon removal of the heat tint, either chemically, electrochemically, or mechanically, corrosion nodules were not formed even under crevice conditions. Follow-up experiments indicated that the stainless steel weldments were less corrosion resistant in the bacterial environments. The results were correlated to the presence of the heat tint, the crevice geometry, the chloride concentration, and the bacterial activities.