Abstract
The effects of thermal and thermomechanical treatments on sensitization development in Type 304 and 316 stainless steels have been measured and compared to model predictions. Sensitization development resulting from isothermal, continuous cooling and pipe welding treatments has been evaluated. An empirically-modified, theoretically- based model is shown to accurately predict material degree of sensitization (DOS) as expressed by the electrochemical potentiokinetic reactivation (EPR) test after both simple and complex treatments. Material DOS is also examined using analytical electron microscopy to document grain boundary chromium depletion and is compared to EPR test results.
© 1986 Association for Materials Protection and Performance (AMPP). All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise) without the prior written permission of AMPP. Positions and opinions advanced in this work are those of the author(s) and not necessarily those of AMPP. Responsibility for the content of the work lies solely with the author(s).
1986
Association for Materials Protection and Performance (AMPP)
You do not currently have access to this content.