The effect of microstructure evolution induced by low-cycle fatigue behavior on the corrosion of welded joint in the simulated environment of low pressure nuclear steam turbine was comprehensively investigated. The microstructure evolution was observed through optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM). Corrosion susceptibility of welded joint was examined by traditional electrochemical measurement and scanning vibrating electrode technique (SVET) measurement. The traditional electrochemical results showed that weld metal was the most susceptive zone with the lowest corrosion potential and the highest corrosion current density in the welded joint, which was in consistence with the results of SVET. In addition, the corrosion resistance of each zone in the post-low-cycle fatigue specimens was higher than that of as-received specimens, which was caused by the lower dislocation density due to low-cycle fatigue behavior.

You do not currently have access to this content.