High-nitrogen-containing Type 316L stainless steels (SS) with 0.12% to 0.22% N are being developed as future structural material of fast breeder reactors because of their improved hardness and resistance to localized corrosion. However, stainless steels with higher nitrogen content are prone to intergranular corrosion (IGC) due to their tendency to get sensitized by enhanced precipitation of Cr2N. Thermomechanical treatment (TMT) of 6.5% cold-work and heat-treatment (1,323 K for 30 min) is evaluated in this study to enhance IGC resistance of 0.07%, 0.12%, 0.14%, and 0.22% nitrogen-containing Type 316L SS. The frequency of coincident site lattice (CSL) boundaries is found to increase with increase in nitrogen content in Type 316L SS. A maximum CSL increase of 35% was seen in 0.22% nitrogen containing stainless steel, as compared to samples containing 0.07% to 0.12% N. The effective grain boundary energy was the least (<0.1 μm−1) for Type 316L SS containing 0.22% N, which is attributed to the higher percentage of Σ3 boundaries. Double-loop electrochemical potentiokinetic reactivation (DL-EPR) tests conducted on the sensitized as-received and TMT samples showed a clear decrease in sensitization for TMT samples. The improved resistance to IGC visualized in the post-DL-EPR optical micrographs of TMT samples is attributed to the breakdown in the connectivity of attacked boundaries. The role of nitrogen in austenitic SS on twinning and generation of CSL boundaries is also discussed.
Skip Nav Destination
Article navigation
1 September 2020
Research Article|
June 10 2020
Enhancing the Intergranular Corrosion Resistance of High-Nitrogen-Containing 316L Stainless Steels by Grain Boundary Engineering via Thermomechanical Treatment
A. Ravi Shankar;
A. Ravi Shankar
*Corrosion Science and Technology Division, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603 102, India.
Search for other works by this author on:
Vani Shankar;
Vani Shankar
**Materials Development and Technology Division, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603 102, India.
Search for other works by this author on:
R.P. George;
R.P. George
‡
*Corrosion Science and Technology Division, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603 102, India.
‡Corresponding author. E-mail: [email protected].
Search for other works by this author on:
John Philip
John Philip
*Corrosion Science and Technology Division, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603 102, India.
Search for other works by this author on:
‡Corresponding author. E-mail: [email protected].
Received:
January 06 2020
Revision Received:
June 10 2020
Accepted:
June 10 2020
Online ISSN: 1938-159X
Print ISSN: 0010-9312
© 2020, NACE International
2020
CORROSION (2020) 76 (9): 835–842.
Article history
Received:
January 06 2020
Revision Received:
June 10 2020
Accepted:
June 10 2020
Citation
A. Ravi Shankar, Vani Shankar, R.P. George, John Philip; Enhancing the Intergranular Corrosion Resistance of High-Nitrogen-Containing 316L Stainless Steels by Grain Boundary Engineering via Thermomechanical Treatment. CORROSION 1 September 2020; 76 (9): 835–842. https://doi.org/10.5006/3487
Download citation file:
Citing articles via
Suggested Reading
Effects of Yield Strength, Corrosion Potential, Composition and Stress Intensity Factor in SCC of Stainless Steels
CONF_MAR2004
Evaluation of the EPR Technique for Measuring Sensitization in Type 304 Stainless Steel
CORROSION (June,1991)
Electrolyte System of EPR Test for Detecting Sensitization in Austenitic Stainless Steel
CORROSION (June,1992)