The common understanding of aqueous CO2 corrosion mechanism considers carbonic acid as an electroactive species. The direct reduction of carbonic acid on a steel surface is believed to be the cause of the higher corrosion rates of mild steel, as compared to that observed in strong-acid solutions with the same pH. However, in-depth quantitative analyses based on comprehensive mechanistic models, developed in recent years, have challenged this idea. In an attempt to provide explicit experimental evidence for the significance of direct reduction of carbonic acid in CO2 corrosion of mild steel, the charge transfer controlled cathodic currents in CO2 saturated solutions were investigated in the present study. The experiments were conducted on three different surfaces: Type 316L stainless steel, pure iron, and API 5L X65 mild steel, in order to examine the possible effect of alloying impurities on the kinetics and the mechanism of cathodic currents. The experimental polarization curves showed that at a constant pH, the charge transfer controlled cathodic currents did not increase with increasing partial pressure of CO2 from 0 bar to 5 bar. This confirmed that the direct carbonic acid reduction was not significant at the conditions covered in the present study, and its sole effect was to buffer the hydrogen ion concentration.
Skip Nav Destination
Article navigation
1 August 2018
Research Article|
March 23 2018
Technical Note: Electrochemistry of CO2 Corrosion of Mild Steel: Effect of CO2 on Cathodic Currents
Aria Kahyarian;
Aria Kahyarian
‡
*Institute for Corrosion and Multi-Phase Flow Technology, Ohio University, 342 West State Street, Athens, OH 45701.
‡Corresponding author. E-mail: [email protected].
Search for other works by this author on:
Bruce Brown;
Bruce Brown
*Institute for Corrosion and Multi-Phase Flow Technology, Ohio University, 342 West State Street, Athens, OH 45701.
Search for other works by this author on:
Srdjan Nešić
Srdjan Nešić
*Institute for Corrosion and Multi-Phase Flow Technology, Ohio University, 342 West State Street, Athens, OH 45701.
Search for other works by this author on:
‡Corresponding author. E-mail: [email protected].
Online ISSN: 1938-159X
Print ISSN: 0010-9312
© 2018, NACE International
2018
CORROSION (2018) 74 (8): 851–859.
Citation
Aria Kahyarian, Bruce Brown, Srdjan Nešić; Technical Note: Electrochemistry of CO2 Corrosion of Mild Steel: Effect of CO2 on Cathodic Currents. CORROSION 1 August 2018; 74 (8): 851–859. https://doi.org/10.5006/2792
Download citation file:
Citing articles via
Suggested Reading
Uncovering Carbide on Carbon Steels by Use of Anodic Galvanostatic Polarization and Its Effect on CO2 Corrosion
CORROSION (December,2015)
Effect of Temperature, Bicarbonate, and MEG Concentrations on CO2 Corrosion of Carbon Steels
CORROSION (April,2017)