The exposure conditions experienced by copper-coated high-level nuclear waste containers in a deep geologic repository will evolve with time. An early exposure period involving the gamma irradiation of aerated humid vapor could lead to the formation of nitric acid condensed in limited volumes of water on the container surface. The evolution of the corrosion processes under these conditions have been studied using pH measurements in limited volumes of water containing various concentrations of nitric acid. The extent and morphology of corrosion was examined using scanning electron microscopy on surfaces and on focused ion beam cut cross sections. The composition of corrosion products was determined by energy dispersive x-ray analyses and Raman spectroscopy. In the absence of dissolved oxygen only minor corrosion was observed with the reduction of nitric acid inhibited by the formation of either chemisorbed nitrate and nitrite species or the formation of a thin cuprite (Cu2O) layer. When the solution was aerated, both oxygen and nitric acid acted as cathodic reagents. After extensive exposure periods corrosion was stifled by the formation of corrosion product deposits of Cu2O, CuO (tenorite), and Cu2NO3(OH)3 (rouaite).

You do not currently have access to this content.