Abstract
In the last years, geothermal power has become a reliable and significant energy source. Because service conditions in geothermal facilities from deeply located aquifers are usually critical in terms of corrosion, materials selection is a very important issue. Preliminary evaluation of the material's suitability represents therefore a valuable strategy to ensure a secure and reliable operation of the facilities. In geothermal applications, the use of high-alloyed materials such as superaustenitic stainless steels, duplex stainless steels, and nickel-based alloys has been considered as a good alternative because of their remarkable corrosion resistance and appropriate mechanical properties. Nevertheless, the corrosion behavior of those metallic materials in geothermal fluids at service conditions has not been determined in many cases. In this work, laboratory tests including electrochemical investigations and exposure tests at 100°C and 150°C (1,500 kPa) showed the limits of suitability concerning localized corrosion of three different, corrosion-resistant alloys in the highly saline fluid of the North German Basin.