In the pulp and paper industry, variability in the process and wood source may result in highly corrosive waste liquors, called black liquors, from the Kraft pulping process. Prior research has demonstrated corrosion rates of carbon steel in pulp mill equipment ranging from <0.03 mm/y to >2.54 mm/y, depending on the wood species pulped. In this study wood species-dependent corrosion is conirmed and age-dependent corrosion is investigated as a function of organic extractive content. The composition of the organic portion of black liquor depends largely on the wood species used. Organic components come from extractives in the wood chips or are generated from the degradation of lignin and other wood constituents during the pulping process. Depending upon the wood species used, some black liquor constituents have been identified to increase the corrosiveness of black liquors whereas others may act as corrosion inhibitors. Our research demonstrates the importance of operational parameters for wood species and wood chip usage and delivery to downstream process corrosion. Further, results show the importance of water-extracted organics in wood, such as long chain fatty acids, using a novel methodology for the separation of extractives and lignin breakdown products in the testing of black liquor corrosiveness with carbon steel A516-Grade 70 (UNS K02700).

You do not currently have access to this content.