Field experiments designed to evaluate deoxygenation of natural seawater as a corrosion control measure for unprotected carbon steel seawater ballast tanks demonstrated decreased corrosion in hypoxic (<0.2 ppm O2) seawater using linear polarization measurements. They also demonstrated the difficulty of maintaining hypoxic seawater. Using a gas mixture it was possible to displace dissolved oxygen. However, aerobic respiration and corrosion reactions consumed oxygen and produced totally anaerobic conditions within the first days of hypoxia. When gaskets and seals failed, oxygen was inadvertently introduced. The impact of oxygen ingress on corrosion depends on the amount of oxygen in the system at the time oxygen is introduced. Carbon steel exposed to cycles of hypoxic seawater and oxygenated atmosphere had higher corrosion rates than coupons exposed to cycles of either consistently aerobic or deoxygenated conditions.

You do not currently have access to this content.