Galvanic corrosion of copper (UNS C11000), 1018 carbon steel (CS, UNS G10180), aluminum alloy 3003 (UNS A93003), and zinc (UNS Z32121) coupled to cathodes of UNS N08367 was tested with and without natural marine biofilms on the cathode surface. Weight losses were significantly higher, and corrosion currents were up to 2 decades higher with a biofilm on the cathode surface for anodes of copper, steel, and aluminum. There was no difference for zinc. Results showed an increase in consumption of the anodic material should be expected in any case where biofilms on the cathodic member of a galvanic couple result in a systematic and significant increase in reduction current at the mixed potential of the couple. Cathodic reduction currents (versus control with no biofilm) were increased at all potentials down to ~ -900 mVSCE, resulting in an elevated current capacity capable of increasing the weight loss of anodic materials over a sustained period of at least 2 months. Biofilms, however, did not increase consumption of zinc anodes. Potentiodynamic polarization curves taken from the corroded samples were used successfully to predict the effect of biofilms on galvanic corrosion rates for the materials tested. Weight-loss values calculated by Faraday's law using corrosion currents from the polarization curves agreed well with actual measured values for anodes of steel, aluminum, and zinc, although there were some discrepancies for copper.

You do not currently have access to this content.