Abstract
Traditionally, sour severity of high-pressure, high temperature (HPHT) oil and gas production wells were assessed by H2S partial pressure (PH2S): The mole fraction of H2S in the gas (yH2S) multiplied by the total pressure (PT). However, PH2S usually over-predicts the actual sour severity of HPHT systems, leading to sub-optimal material selection choices. To reflect recent advances in thermodynamic modeling and to avoid over conservatism, after careful deliberation, ANSI/NACE MR0175-2021/ISO 15156-2:2022 recently expanded the number of sour severity metrics to four: PH2S, fugacity (fH2S), chemical activity (aH2S) and dissolved concentration (CH2S) of the aqueous phase. The new metrics are often computationally derived and account for thermodynamic non-idealities, which are significant at HPHT conditions. Regardless of preferred metric, quantifying the sensitivity of each metric to a wide range of temperatures and total pressures is critical when conducting H2S service assessments.
In this article, the effect of increasing temperature and total pressure on the thermodynamically derived apparent H2S solubility (KH2S = CH2S/PH2S) was investigated. KH2S is a critical parameter for quantifying changes in H2S phase behavior/sour severity of HPHT systems. Apparent KH2S values were calculated by two different thermodynamic models and benchmarked to two publicly available H2S/H2O datasets up to 120 °C and 10.3 MPa equilibrated in a brine containing 165,000 mg/L Cl−. The model that provided the best match to the experimental data was later used in a much broader thermodynamic sensitivity study of the H2S/CH4/H2O/NaCl “oilfield” system. For this sensitivity analysis, changes in fH2S, aH2S, CH2S and KH2S were individually modeled between 4 to 204 °C, at total pressures up to 138 MPa, and in brines containing up to 25 wt % NaCl (180,000 mg/L Cl−). At 4 °C, H2S solubility decreased by 40-fold, when predicted KH2S values were extrapolated from 0.1 to 138 MPa, while for this pressure increase the fugacity coefficient decreased by 4-fold.