Multiple mass transport and reaction type rate processes are involved in high temperature refinery sulfidation corrosion. Corrosion tests provide only aggregate rates of corrosion which results from underlying generally sequential sub-processes. Theoretically, rates of these sub-processes can be calculated using principles of nonequilibrium thermodynamics and kinetics, if associated phenomenological coefficients are known. These coefficients are traditionally obtained by experimentally confirming the governing rate determining step. In complex systems such as refinery sulfidation corrosion, conventional empirical models such as Arrhenius, parabolic, logarithmic, or other popular rate laws cannot be confirmed exclusively. This has been elucidated by high temperature sulfidation tests manipulating concentration, temperature, and duration. Theories of solid-state chemistry and general chemical science are discussed considering the experimental data in order to create a mechanistic model which can simulate trends in corrosion rates.

You do not currently have access to this content.