Operating a pipeline requires regular field surveys for controlling external corrosion threats. Surveys are typically performed at rectifiers and test stations, and occasionally a close interval survey between test stations is performed. Pipeline surveys provide only an indirect measure of the corrosion threat and are either labor intensive or do not provide sufficient granularity and accuracy to pinpoint corrosion features in a timely manner.

A computational model of the primary and third party (crossing) pipelines and associated cathodic protection systems is built and further calibrated to accurately simulate protection status based on survey and monitoring data. The resulting digital twin is a replica of the real-world condition with a resolution at pipeline joint level for its full pipeline length. Fluctuations in field data are captured and translated into IR-free potentials and corrosion rate distribution at coating defects along the pipeline.

This article discusses a case study of a calibrated digital twin model of a complex pipeline system. Back testing based on historical survey data was performed to identify events on the pipeline that increase the corrosion risk. The digital model will be used to improve the corrosion prevention strategy within an integrated external corrosion management program.

You do not currently have access to this content.