The effect of H2S and corrosion inhibitor on the aqueous corrosion behavior of mild steel was evaluated at high CO2 partial pressure conditions. The experiments were performed in a 7.5 L autoclave with different temperatures (25°C and 80°C) and different H2S concentrations (1000 ppmv and 2000 ppmv) at 12 MPa CO2. The corrosion rate of steel samples was determined by electrochemical and weight loss measurements. The surface and cross-sectional morphology and the composition of the corrosion product layers were analyzed by using surface analytical techniques (SEM, EDS and XRD). Results showed that the presence of 1000 ppmv and 2000 ppmv H2S decreased the corrosion rate of mild steel compared with pure CO2 condition. However, the final corrosion rates were still higher than the targeted threshold (< 0.1 mm/y). Surface and cross-sectional analyses revealed the formation of FeS in the presence of H2S and no localized corrosion was observed. The addition of 400 ppmv of an imidazoline-based corrosion inhibitor reduced the corrosion rate below 0.1 mm/y in high pressure CO2 conditions with 2000 ppmv H2S.

You do not currently have access to this content.