ABSTRACT
The manuscript investigates the use of cathodic protection -based strategies (e.g. sacrificial anodes) to prevent corrosion phenomena of two green (e.g. recycled) 43200 and 46400 Aluminum alloys. These materials are selected due to their high concentration of alloying elements (e.g. Si, Cu, Fe) that renders them as a representative example of the typical composition of secondary Aluminums. Voltammetry and zero resistance ammeter (ZRA) -based methods are used to: a) asses the protection capability of Zinc-based sacrificial anodes; and b) experimentally determine the amount of Zinc required to cathodically protect a certain surface area of each investigated material for a specific period of time. As a further level of analysis, the manuscript investigates the protection capability of sacrificial anodes when coupled with an anodized secondary alloy. It is demonstrated that, in the case of highly alloyed Aluminums, cathodic protection can provide competing advantages with respect to conventional anodization treatments.