We explore how rectifier voltage and current measurements can inform pipeline engineers and technicians on the health, performance and operation of their cathodic protection (CP) assets, and predict the future operation of existing and newly installed cathodic protection systems. We leverage years of data from monitoring units installed on CP rectifiers combined with site specific details describing the site and its CP system provided by pipeline operators to train a machine learning model.

The study includes current and historical data from hundreds of unique rectifier locations across Canada which have been historically monitored using a remote monitoring unit (RMU). RMU readings are analyzed and grouped by long term resistance trends. Contextual data is collected for each site. This data describes the cathodic protection relevant details of the site, including details of the pipe, rectifier, groundbed and soil.

A machine learning model has been developed which accepts the contextual data associated with the rectifier and will predict the long-term rectifier resistance trend.

You do not currently have access to this content.