In advanced power generation systems, the supercritical CO2 (s-CO2) Brayton cycle has been developed as a promising technology because of its high efficiency, compactness, and potential to complete carbon capture. Selecting appropriate alloys as the constructional materials is one of the crucial steps to the successful deployment and long-term safe operation of the s-CO2 Brayton cycle. Current work investigates the corrosion behavior of candidate alloys in s-CO2 environments with impurities. The corrosion products are characterized and the possible corrosion mechanism in the high-temperature s-CO2 environment is discussed. Besides, the effect of impurity on the corrosion behavior of alloys is discussed.

You do not currently have access to this content.