Abstract
A negative disturbance simulation experiment of X60 steel was carried out in different soil environment. The influence of soil environment on the hydrogen embrittlement sensitivity of material was obtained by comparing the area shrinkage and elongation after fracture of pipeline substrate under different soil environment. The results show that the hydrogen embrittlement susceptibility of X60 steel in the soil of Tanglang Mountain increases with the negative shift of cathodic protection potential (the increase of cathodic current density). The hydrogen embrittlement susceptibility of X60 steel in the soil of Tanglang Mountain is less than 5% when the cathodic protection potential is less than -1.07 V vs. CSE (the current density is less than -0.1 mA/cm2). and the risk of hydrogen embrittlement is low; When the cathodic protection potential exceeds -1.1 V vs. CSE (current density exceeds -0.3 mA/cm2), the hydrogen embrittlement sensitivity coefficient exceeds 35%, and there is a certain risk of hydrogen embrittlement.