Abstract
The safe operation of offshore wind turbines places high demands on corrosion protection. This is particularly the case about the planned future extension of the service life beyond 25 years. The highly corrosive environment towards metallic materials leads to a loss of material thickness of the tower structure and thus to a deterioration of mechanical properties. This can be counteracted by corrosion protection measures adapted to the respective load case, such as organic coatings and cathodic corrosion protection (CCP). Much research has already been done in this area about inhibiting the corrosion process and there are regulations and guidelines that specify requirements for corrosion protection to achieve the required service lives.
However, gaps exist regarding free corrosion. This plays a greater role especially for time intervals during the installation of the plants and their maintenance, during which often no CCP can be operated. This applies to the exposure areas in the underwater and sediment area. This problem is intensified by the difficult to estimate corrosion rates caused by the different zones, with their different amounts of dissolved oxygen and the various influencing factors.
This paper deals with experiments conducted in a laboratory container with artificial seawater and sediment in basins.